# Fracture toughness and crack - growth measurements in GRP

# M. J. OWEN, R. J. CANN\*

Department of Mechanical Engineering, University of Nottingham, Nottingham, UK

Critical crack tip stress intensity factor ( $K_c$ ) measurements were made for polyester resin reinforced with glass chopped strand mat (CSM) and woven roving fabric (WRF). Specimen thickness and initial crack length were varied for centre notched (CN) 100 mm wide: specimens. Some specimens were saturated by immersion in water under pressure.  $K_{\rm c}$  was negligibly affected by specimen thickness and it was concluded that plane strain conditions are not achieved in laminates of normal thickness. Scatter can be reduced by adjusting results to a standard glass content and  $K_{\rm c}$  varies continuously with crack length. The CSM experiments were extended to 915 mm wide specimens which failed at very low nett section stresses but there may be a region in which  $K_{\rm e}$  is roughly constant relative to crack length. In WRF specimens, however, it is the nett section stress which is constant at a value substantially below the UTS. Fatigue crack-growth studies were carried out on CN specimens. The Paris law adequately describes crack growth in CSM specimens at low rates of growth but Forman's law is better at high rates of growth. Neither law is valid for WRF material when dry but the behaviour changes after saturation with water. The crackgrowth resistance of both materials is severely reduced by saturation with water.

## 1. Introduction

For both brittle and ductile materials, it is often possible to predict the failure of cracked components subjected to static or cyclic loads using the principles of fracture mechanics [1, 2]. In recent years there have been attempts to apply this growing body of work to glass-reinforced plastics (GRP). The aims of the work described here were to examine the problems associated with the application of linear elastic fracture mechanics to static and fatigue failure in GRP, both dry and after a period of immersion in water.

Table I summarizes the GRP fracture toughness results obtained by a number of investigators [3-15]. The parameters commonly measured are critical stress intensity factor,  $K_c$ , and critical strain energy release rate  $G_{\mathbf{c}}$ . It can be seen from Table I that these quantities are dependent on:

(1) glass content (glass content variation is indicated by different ultimate tensile strengths for similar materials);

(2) specimen type;

(3) specimen size;

(4) crack length;

(5) reinforcement type.

 $G_{\mathbf{c}}$  values determined by compliance methods differed from those calculated from  $K_c$  values unless they had been corrected to allow for crack tip damage [13] by adding a small amount to the crack length used to calculate  $K_{c}$ . This incremental crack length was either measured [3, 7], or Irwin's correction was applied [7, 9], i.e. by adding  $r_{\rm v}$  to the initial crack length, where

$$\mathbf{r}_{\mathbf{y}} = \frac{1}{c} \left( \frac{K}{\sigma_{\mathbf{y}}} \right)^2 \tag{1}$$

where  $c = \frac{1}{2}\pi$  for plane stress or  $\frac{1}{6}\pi$  for plane strain, and  $\sigma_{\mathbf{v}}$  is the yield stress. Since GRP do not yield, various stresses have been used for  $\sigma_{\rm v}$ , and attempts have been made to relate them to observed values, [9, 10, 13, 14]. Because corrections increased  $K_c$ values between 10 and 70%, for comparison purposes uncorrected values appear in Table I. Results taken from various sources [3, 5, 7, 9, 13] are plotted in Fig. 1.

Reductions in strength and stiffness of about \* Present address: National Coal Board, Mining Research and Development Establishment.

0022-2461/79/081982-15 \$03.50/0 © 1979 Chapman and Hall Ltd. 1982

| Referential Matrix         U13         State         ESK         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Randocontent         Matrix         UTS $S_{11}$ OR $S_{11}$ OR $S_{11}$ OR $S_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------|---------------------------|------------------|-------|----------------------------------------|-----------------------------|
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \left[ 1 \right] \  \mbox{thereford} \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                       |                                      | SEN                                                |                                |                           | BEND             |       |                                        |                             |
| 1       Undertending       10       5011       10         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100         1       100       100       100       100       100         1       100       100       100       100       100       100         1       100       100       100       100       100       100       100         1       100       100       100       100       100       100       100         1       100       100       100       100       100       100       100       100         1       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1] Undirectional Fooy       127       6.3       1.3       1.49         1.77       1.80       1.27       1.90       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.27       1.89       1.27         1.77       1.89       1.89       1.27       1.89         1.77       1.89       1.89       1.89       1.89         1.77       1.89       1.89       1.89       1.89         1.77       1.89       1.21       1.89       1.89         1.77       1.20       1.21       1.21       1.21       1.21         1.77       1.21       1.21       1.21       1.21       1.21       1.21         1.77       1.21       1.21       1.21       1.21       1.21       1.21       1.21         1.77       1.71       1.21       1.21       1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a W<br>(mm) (mm)                        | К <sub>е</sub><br>(МРат <sup>и</sup> | $G_{c} = t = a$<br>(kJ m <sup>-2</sup> ) (mm) (mm) | W K <sub>c</sub><br>(mm) (MPa1 | Ge (10 <sup>1 m-2</sup> ) | t a<br>(mm) (mm) | (mm)  | K <sub>e</sub><br>MPam <sup>⊿2</sup> ) | Ge<br>(KJ m <sup>-2</sup> ) |
| 17         10013         127         10013         127           17         10013         127         10013         127           17         10013         127         10013         127           17         10013         127         10013         127           17         10013         127         10013         127           17         10013         127         10013         127           17         10013         127         1013         101           17         10113         101         101         101         101           17         1013         101         101         101         101         101           17         1013         101         101         101         101         101         101           17         1013         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 <td><math display="block"> \begin{bmatrix} 1.7 &amp; 19.30 &amp; 153 &amp; 169 \\ 1.7 &amp; 19.30 &amp; 123 &amp; 123 \\ 1.7 &amp; 19.41 &amp; 123 &amp; 113 \\ 1.7 &amp; 19.41 &amp; 123 &amp; 113 \\ 1.7 &amp; 16.80 &amp; 132 &amp; 113 \\ 1.7 &amp; 12.70 &amp; 132 &amp; 120 \\ 1.7 &amp; 12.70 &amp; 123 &amp; 120 \\ 1.7 &amp; 12.70 &amp; 120 &amp; 120 \\ 1.7 &amp; 12.70 &amp;</math></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> | $ \begin{bmatrix} 1.7 & 19.30 & 153 & 169 \\ 1.7 & 19.30 & 123 & 123 \\ 1.7 & 19.41 & 123 & 113 \\ 1.7 & 19.41 & 123 & 113 \\ 1.7 & 16.80 & 132 & 113 \\ 1.7 & 16.80 & 132 & 113 \\ 1.7 & 16.80 & 132 & 113 \\ 1.7 & 16.80 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 113 \\ 1.7 & 12.70 & 132 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 123 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 & 120 & 120 \\ 1.7 & 12.70 &$ |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{bmatrix} 127 & 3.05 & 1.42 \\ 127 & 1.66 & 123 & 1.65 \\ 127 & 6.66 & 123 & 1.65 \\ 127 & 6.66 & 123 & 1.65 \\ 127 & 6.66 & 123 & 1.55 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 127 & 12.01 & 23 & 1.80 \\ 128 & 128 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238 \\ 128 & 238 & 238 & 238 & 238$  |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         1000101         110           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           17         1000101         100           1010010101         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [127] 1893 123     1.55       127     6.86 153     1.65       127     6.86 153     1.65       127     6.86 153     1.65       127     6.86 153     1.65       127     6.86 153     1.65       127     6.86 153     1.65       127     1.25 12.55 153     1.91       127     1.25 12.55 153     1.91       127     1.27 12.70 123     1.91       127     1.29 123     1.56       127     2.91 12     1.27 12.70 123       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     2.91 12     1.30       127     1.31 12     1.31       138     1.31     1.32       141     Unditectional     1.31       127     1.31     1.32       138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         666 (12)         153           17         166 (12)         169           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           177         170 (13)         19           178         170 (13)         19           179         170 (13)         19           171         170 (13)         19           171         170 (13)         19           171         170 (13)         11           171         170 (13)         19           171         170 (13)         19           171         170 (13)         174           171         171 (13)         174           171         174         174           171         174         174 </td <td>127     6.66     153     153       127     16.66     127     12.0     153       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     13     13     13       127     13.18     13     13     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     12     12.7     6.3     13       127     6.3     12     12.7     13.7     133       127     6.3     12     12.7     137     137       127     6.3     12     12.7     137     137       127     12.5     130     137     137     137       127     12.5     130     137     137     137       128     13.5     132   &lt;</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127     6.66     153     153       127     16.66     127     12.0     153       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     127     12.0     13       127     12.0     13     13     13       127     13.18     13     13     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     13     6.3     13       127     6.3     12     12.7     6.3     13       127     6.3     12     12.7     13.7     133       127     6.3     12     12.7     137     137       127     6.3     12     12.7     137     137       127     12.5     130     137     137     137       127     12.5     130     137     137     137       128     13.5     132   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         66/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         259/15         16           127         64/15         16           129         131         10           121         121/15         10           121         254/15         10         10/17           121         121/15         10         10/17           121         121/15         10         10/17           121         121/15         10         10/17           121         121/15         10         10/17           121         121/15         10         10/17           121         121/15         10         10/17           121         121/15         121         10 <td< td=""><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         164         12         164           1.7         255         12         14           1.7         255         12         14           1.7         255         12         14           1.7         257         12         12           1.7         257         12         12           1.7         257         12         12           1.7         257         12         12           1.7         257         12         12           1.7         257         12         12         12           1.7         125         12         12         12         12           1.7         125         12         12         12         12           1.7         125         12         12         12         12           1.7         125         12         12         12         12         12           1.8         EVENter         12         12         12         12         12         12           1.7         125         12         12         12         12         12         12           1.11         12         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1.27         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{bmatrix} 17 & 1270 & 123 & 130 \\ 127 & 1270 & 132 & 171 \\ 127 & 1270 & 132 & 130 \\ 127 & 292 & 130 \\ 127 & 292 & 130 \\ 127 & 292 & 130 \\ 127 & 292 & 130 \\ 127 & 292 & 130 \\ 127 & 292 & 130 \\ 127 & 291 & 127 & 161 \\ 127 & 203 & 122 & 161 \\ 127 & 206 & 122 & 150 \\ 127 & 6.63 & 122 & 150 \\ 127 & 6.63 & 122 & 163 \\ 127 & 12.63 & 123 & 163 \\ 127 & 12.75 & 153 & 163 \\ 127 & 12.75 & 153 & 163 \\ 127 & 12.75 & 153 & 163 \\ 127 & 12.75 & 153 & 163 \\ 127 & 12.75 & 12.75 & 12.7 & 12.75 \\ 127 & 12.75 & 12.75 & 12.7 & 12.75 & 12.7 \\ 127 & 12.75 & 12.75 & 12.7 & 12.7 & 12.7 & 12.75 \\ 127 & 12.75 & 12.75 & 12.9 & 12.7 & 12.75 & 12.75 \\ 127 & 12.75 & 12.75 & 12.7 & 12.75 & 12.7 & 12.75 \\ 127 & 12.75 & 12.75 & 12.7 & 12.7 & 12.75 & 12.75 & 12.95 \\ 127 & 12.75 & 0.025 & 0.9340 & 0.0325 & 2.54 \\ 127 & 12.75 & 0.026 & 0.9340 & 0.0325 & 2.54 \\ 128 & 12.2560820 & 2.54 & 76.2 & 1.187 & 0.1731 & 2.54 \\ 128 & 12.2560820 & 2.54 & 76.2 & 1.187 & 0.1731 & 2.54 \\ 128 & 120 & 0.026 & 0.9386 & 0.0355 & 2.54 \\ 241 & 244 & 241 & 266 & 0.0356 & 0.0355 & 2.54 \\ 241 & 244 & 241 & 266 & 0.0356 & 2.24 & 262 & 0.0357 & 2.54 \\ 241 & 244 & 241 & 241 & 242 & 244 & 242 & 244 & 242 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 & 244 &$                                               |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     1201     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{bmatrix} 1.27 & 1.270 & 152 & 1.71 \\ 1.27 & 1.270 & 123 & 1.81 \\ 1.27 & 1.270 & 123 & 1.36 \\ 1.27 & 1.81 & 123 & 1.51 \\ 1.27 & 1.81 & 123 & 1.51 \\ 1.27 & 6.35 & 123 & 1.61 \\ 1.27 & 6.35 & 123 & 1.61 \\ 1.27 & 6.36 & 123 & 1.56 \\ 1.27 & 1.260 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.276 & 123 & 1.66 \\ 1.27 & 1.260 & 1023 & 1.66 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 1.27 & 1.256 & 0.267 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.290 & 0.0323 & 2.24 \\ 2.48 & 76.2 & 1.27 & 0.260 & 6.91 & 7.62 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.00 \\ 2.48 & 76.2 & 1.26 & 0.260 & 6.91 & 5.26 & 5.00 \\ 2.48 & 76.2 & 1.28 & 0.260 & 0.260 & 0.260 & 0.260 & 0.260 & 0.260 & 0.260 & 0.260 $                       |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 17     2012     131       17     2012     136       17     2012     136       17     2012     136       17     5012     136       17     5012     136       17     60112     60112       17     60112     138       17     60112     138       17     60112     138       17     60112     138       17     60112     138       17     136     112       17     136     112       17     136     112       17     136     112       17     136     112       17     136     112       17     136     112       17     136     112       17     136     112       17     136     1139       17     136     1139       18     1147     136       19     1147     136       10     1147     136       11     1147     136       11     1147     136       11     1147     136       12     139     131       13     131     131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127       252152       156         127       252152       150         127       253152       150         127       253152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       150         127       553152       159       0277         127       553152       159       0272         127       553152       139       0272         128       123       563       0352         127       553       139       0272         128       500       0352       254       381         128       500       0352       254       381       1470         128       503       0352       254       381       1470       0355         129       504       503       139       0352 <t< td=""><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127       2.3213       1.30         127       6.3133       1.65         127       6.3133       1.65         127       6.3133       1.65         127       6.3133       1.65         127       6.3133       1.65         127       6.3133       1.65         127       1.37133       1.36         127       1.37133       1.36         127       1.37133       1.36         127       1.3713       1.36         127       1.3713       1.36         127       1.3713       1.36         127       1.3713       1.36         127       1.3713       1.36         127       1.3713       1.36         5413       1.312       0.377         5413       1.312       0.377         5413       1.312       0.377         5413       1.312       0.377         5413       1.312       0.375         5413       1.312       0.376         5413       0.137       2.43       0.137         5413       0.137       2.43       0.131         5413       0.137       2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127       1,91 (25)       1,31         127       6,31 (25)       1,31         127       6,31 (25)       1,31         127       6,31 (25)       1,31         127       1,26 (12)       1,31         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         127       1,26 (12)       1,33         128       7,23       1,33       0,173         129       7,23       1,33       0,173       2,34         131       131       0,235       2,34       381       1,172       0,356         1413       1412       0,356       0,355       2,34       381       1,172       0,356         1413       1414       0,356       0,355       2,34       381       1,172       0,356         151       151       0,355       2,34       381       1,172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127     4.19     1.51       127     5.18     1.50       127     5.18     1.51       127     5.18     1.51       127     5.18     1.51       127     5.18     1.51       127     5.15     1.51       127     5.15     1.51       127     5.15     1.50       127     5.86     1.51       127     12.70     1.27       127     12.70     1.27       127     12.70     1.27       127     12.70     1.27       127     12.70     1.27       127     12.76     1.23       127     12.76     1.23       127     12.76     1.24       127     12.76     1.29       127     12.76     1.29       127     12.76     1.29       127     12.76     1.29       127     12.76     1.29       127     12.75     1.29       127     12.75     1.29       128     12.25     1.29       129     129     1.23       120     120     1.29       121     121     123       121     123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127       13812       150         127       653182       161         127       653182       165         127       653182       165         127       653182       165         127       653182       165         127       1237       153         127       1236       153         127       1236       153         127       1236       153         128       FH3       FH3       0156         129       01356       147       0210         129       1236       139       01356       147         FH3       FH3       FH3       0136       01366         FH3       FH3       FH3       0137       254       52       139       01356         FH3       FH3       FH3       FH3       0136       01366       01366       01366         FH3       FH3       FH3       FH3       0136       01366       01366       01366         FH3       FH3       FH3       0137       254       381       147       0202         FH3       FH3       0136       0136       0136       0136 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127         6.33         1.61         1.27         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.37         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33 <th1< td=""><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 117         6/31 120<br>(127)         123<br>(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127     6.30     127     6.30     127     6.30     127     6.30     127     1.30       127     6.86     127     12.76     1.31     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.37     1.39     0.1751     2.54       EHTS     EPUN 826/CL     2.34     76.2     1.39     0.1351     2.54     76.2     1.39     0.0352     2.54       EHTS     EPUN 826/CL     2.34     76.2     1.30     0.0352     2.54     76.2     1.30     0.0352     2.54       EHTS     EPUN 826/CL     2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| 127       666 153       1.37       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27       1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| $ \begin{array}{  c   c   c   c   c   c   c   c   c   c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [4] Unidirectional       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [1.26]       [1.27]       [1.27]       [1.26]       [1.27]       [1.26]       [1.27]       [1.26]       [1.27]       [1.26]       [1.27]       [1.26]       [1.27]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.27]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.26]       [1.27]       [1.26]       [1.26]       [1.26]       [1.27]       [1.26]       [1.27]       [1.26]       [1.27]       [1.27]       [1.27]       [1.27]       [1.27]       [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4] Unidirectional     2.54     76.2     1.187     0.1751     2.54       FHTS     EPON 826/CL     2.54     76.2     1.187     0.1751     2.54       EHTS     ERL 2256/0820     2.54     76.2     1.209     0.2277     2.54       EHTS     ERL 2256/0820     2.54     76.2     1.209     0.0225     2.54       EHTS     ERL 2256/0820     2.54     76.2     0.9340     0.0252     2.54       FHTS     ERL 2256/0820     2.54     76.2     0.9340     0.0252     2.54       SHTS     EPON 826/CL     2.54     76.2     0.9340     0.0252     2.54       SHTS     ERV 826/CL     2.54     76.2     0.9340     0.0252     2.54       SHTS     EPON 826/CL     2.54     76.2     0.9340     0.0252     2.54       SHTS     EPON 826/CL     2.54     76.2     0.9340     0.0252     2.54       ShtTS     EPON 826/CL     2.54     76.2     0.9340     0.0252     2.54       ShtTS     EPON 826/CL     2.54     76.2     0.9340     0.0252     2.54       Chooped     PON 826/CL     2.54     76.2     0.935     1.36       Falas     Interes     0.1587     6.1.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| SHTS         EPON 826/CL         2.54         76.2         1.187         0.1751         2.54         38.1         1.70         0.2002           EHTS         ENL 226/0820         EHTS         ENL 226/0820         0.2277         254         38.1         1.67         0.2002           EHTS         ENL 226/0820         EHTS         ENL 226/0820         38.1         1.70         0.2002           EHTS         ENL 226/0820         2.54         76.2         1.0940         0.052         2.54         38.1         1.67         0.2002           EHTS         ENL 226/0820         2.54         76.2         0.9940         0.052         2.54         38.1         1.70         0.2002           SHT         EPON 82//MABA         7.6.2         1.74         0.524         38.1         1.67         0.894           Atage         0.1587         6.91         76.2         1.74         0.524         38.1         1.62         0.696           Atage         6.1         76.2         1.74         0.524         38.1         1.62         0.696           Atage         6.1         1.75         0.693         7.62         1.74         0.549         1.61         1.61           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHTS       EPON 826/CL       2.34       76.2       1.187       0.1751       2.54         EHTS       ERL 2256/0820       2.54       76.2       1.439       0.2277       2.54         EHTS       ERL 2256/0820       2.54       76.2       1.293       0.1926       2.54         EHTS       ERL 2556/0820       2.54       76.2       0.9340       0.0925       2.54         SHTS       ERL 2556/0820       2.54       76.2       0.9340       0.0325       2.54         SHTS       ERL 2556/0820       2.54       76.2       0.9340       0.0325       2.54         SHTS       EPON 826/L       2.54       76.2       0.9340       0.0325       2.54         SHTS       EPON 826/MAB       2.54       76.2       0.9340       0.0325       2.54         SHTS       EPON 826/MAB       2.54       76.2       1.374       0.529       2.54         Shitse       PON 826/MAB       2.54       76.2       1.374       0.520       0.593       2.54         Shitse       PON 826/MAB       0.1587       2.54       76.2       1.374       0.520       2.54         Grobed       Felast       I.125       2.50       2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                      |                                                    |                                |                           |                  |       |                                        | [                           |
| EHTSERL 2256/002EHTSERL 2256/002EHTSERL 2256/002EHTSERL 2256/002EHTSERL 2256/0020EHTSERL 2256/002022772.930.01562.8438.11.4720.2802EHTSERU 2556/0020EHTSERU 2556/00200.05552.5438.11.4720.0205FHTSERU 2556/0020ERU 2556/00200.05552.5438.11.4720.0205FHTSERU 2556/0020ERU 2556/00200.05552.5438.11.6760.075FHTSERU 2556/0020ERU 2556/00200.05552.5438.11.6760.075FHTSERU 2556/0020ERU 25500.05552.5438.11.6760.075FHTSERU 2556/0020ERU 25500.05552.5438.11.6260.4904FHTSERU 25500.05552.5438.11.6260.49041.51.6FHTSERU 25500.15670.21752.6438.11.6260.49041.51.6FHTSERU 25500.15871.260.2571.6741.51.0010.010.016.0Felters0.15875.000.2175.001.6741.51.0010.016.0Felters0.15866.135.100.2771.6741.51.0010.016.0Felters0.15866.135.100.2771.6741.51.0010.016.0Felters0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-HTS       EN12256/0520       2.54       762       1.439       0.2277       2.54         E-HTS       EPON 88/CL       2.54       76.2       1.439       0.0217       2.54         E-HTS       EPON 88/CL       2.54       76.2       1.439       0.0217       2.54         FHTS       EPON 82/CL       2.54       76.2       1.209       0.1926       2.54         S-HTS       EPON 82/CL       2.54       76.2       0.9340       0.0525       2.54         S-HTS       EPON 82/MABA       2.54       76.2       1.39       0.0215       2.54         S-HTS       EPON 82/MABA       2.54       76.2       1.39       0.2277       2.54         S-HTS       EPON 82/MABA       2.54       76.2       1.34       0.5249       2.54         S-HTS       EPON 82/MABA       2.54       76.2       1.34       0.5249       2.54         S-HTS       EPON 82/MABA       0.1587       C.1.54       76.2       1.34       0.5249       2.54         S-HTS       EPON 82/MABA       0.1587       C.1.54       76.2       1.34       0.5249       2.54         S-HTS       EPON 82/MABA       0.1587       G.1.5       2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.AT 76.3                               | 1 1 8 7                              | 01751 754                                          | 301 136                        | 01576                     |                  |       |                                        |                             |
| EHTS       EPON 826/CL         EHTS       EPON 826/CL         SHTS       FEU 2256/0820         SHTS       FEON 836/CL         SHT       ST         SHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EHTS       EPON 826/CL $2.54$ $7.62$ $1.209$ $0.1926$ $2.54$ EHTS       ERL 255(0820) $2.54$ $76.2$ $1.209$ $0.0255$ $2.54$ FHTS       ERL 255(0820) $2.56$ $76.2$ $1.209$ $0.0255$ $2.54$ SHTS       EPON 826/CL $2.54$ $76.2$ $1.209$ $0.0255$ $2.54$ SHTS       EPON 826/MABA $2.54$ $76.2$ $1.374$ $0.2249$ $2.54$ SHTS       EPON 826/MABA $2.54$ $76.2$ $1.374$ $0.5249$ $2.54$ SH1S       EPON 826/MABA $2.54$ $76.2$ $1.374$ $0.5249$ $2.54$ (5)       Random       Polyester $0.1587$ $6.13$ $7.62$ $6.93$ $7.62$ (5)       Random       Polyester $0.1587$ $6.13$ $5.25$ $2.54$ (5)       Random       Polyester $0.1587$ $6.93$ $7.62$ $6.93$ $7.62$ (5)       Random       Polyester $0.1587$ $6.93$ $7.62$ $6.93$ $7.62$ $6.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/ | 1 420                                | +C'7 IC/I'0                                        | 046.1 1.00                     | 0/CI-0 0                  |                  |       |                                        |                             |
| EHTS       ERL 2256/0820       2.54       76.2       0.2951       5.31       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       1.112       0.0225       2.54       38.1       0.112       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td>EHTS     ERL 2256/0820     2.54     76.2     0.9340     0.0225     2.54       SHTS     EPON 826/CL     0.1587     0.0254     0.0255     2.54       SHTS     EPON 826/CL     0.1587     0.0255     2.54     0.0255     2.54       SHTS     EPON 826/CL     0.1587     0.1587     0.0255     2.54     0.0255     2.54       SHTS     EPON 826/MABA     2.54     76.2     1.374     0.525     2.54       SHTS     EPON 826/MABA     0.1587     0.1587     0.550     9.68     14.86       Chopped     Felose     G1.5     2.50     250     9.58     14.86       Felose     G1.5     2.50     2.50     9.68     14.86       Totoped     Felose     G1.5     2.50     2.50     9.33       Totoped     S.5     2.50     2.50     9.33     3.06       Totes     S.5     2.50     2.50     9.33     3.06       Upress     G1.5     2.55     2.50     9.33     3.06       Upress     G1.5     2.55     2.50     9.39     3.06       Upress     S.5     2.50     2.50     5.88     3.06       Upress     S.50     2.50     6.93     3.06<td>54 76.7</td><td>1 200</td><td>0 1976 7 54</td><td>38.1 1.070</td><td>0.2017</td><td></td><td></td><td></td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EHTS     ERL 2256/0820     2.54     76.2     0.9340     0.0225     2.54       SHTS     EPON 826/CL     0.1587     0.0254     0.0255     2.54       SHTS     EPON 826/CL     0.1587     0.0255     2.54     0.0255     2.54       SHTS     EPON 826/CL     0.1587     0.1587     0.0255     2.54     0.0255     2.54       SHTS     EPON 826/MABA     2.54     76.2     1.374     0.525     2.54       SHTS     EPON 826/MABA     0.1587     0.1587     0.550     9.68     14.86       Chopped     Felose     G1.5     2.50     250     9.58     14.86       Felose     G1.5     2.50     2.50     9.68     14.86       Totoped     Felose     G1.5     2.50     2.50     9.33       Totoped     S.5     2.50     2.50     9.33     3.06       Totes     S.5     2.50     2.50     9.33     3.06       Upress     G1.5     2.55     2.50     9.33     3.06       Upress     G1.5     2.55     2.50     9.39     3.06       Upress     S.5     2.50     2.50     5.88     3.06       Upress     S.50     2.50     6.93     3.06 <td>54 76.7</td> <td>1 200</td> <td>0 1976 7 54</td> <td>38.1 1.070</td> <td>0.2017</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54 76.7                                 | 1 200                                | 0 1976 7 54                                        | 38.1 1.070                     | 0.2017                    |                  |       |                                        |                             |
| SHTS       EPON 826/CL       2.36       76.2       0.2367       3.81       0.3316       0.0376         SHTS       (B-suget)       2.4       76.2       1.74       0.5297       3.81       1.616       0.0976         SHTS       (B-suget)       3.81       1.616       0.4904       1.61       1.61       1.61         B-suget)       3.1       1.616       0.4904       3.81       1.610       0.01       1.1       1.61         B-suget)       3.1       1.616       0.729       2.54       3.81       1.616       1.61         B-suget)       3.1       1.616       0.724       3.81       1.616       0.4904       1.61         chopped       61       2.50       6.93       7.62       1.674       1.5       1.00       1.00       1.0         Felass       0.1587       0.1587       0.51       1.674       1.5       1.67       1.67         Berlon       Polyser       0.1587       0.127       16.74       1.5       1.6       1.00       1.00       1.01       1.61         fot       Berlon       Polyser       0.127       16.74       5.80       1.69       1.61       1.61       1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S-HTS         EPON 826/CL         2.3d         76.2         0.2367         0.0525         2.34           B-staged)         B-staged)         2.3d         76.2         0.2967         0.0525         2.34           S-HTS         EPON 826/MAIA         2.3d         76.2         0.374         2.54         2.54           S-HTS         EPON 826/MAIA         2.3d         76.2         1.74         0.3249         2.54           S-HTS         EPON 826/MAIA         0.1587         0.15         76.2         1.74         0.3249         2.54           Felas         Elass         G1.5         2.50         5.69         1.4.86         5.74           Ubbed         Polyester         0.1587         0.1587         0.127         16.74         5.74           Ubbed         Sis         2.50         25.0         9.38         1.386         5.64         3.36           Ubbes         Grifters         3.5         2.52         2.53         0.33         3.06         5.86         5.86           Felass         Grifters         3.55         2.50         9.33         3.06         5.88         5.86         5.86         5.86         5.86         5.86         5.86         5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54 76.2                                 | 0.9340                               | 0.0525 2.54                                        | 38.1 1.132                     | 0.0575                    |                  |       |                                        |                             |
| Betward         Betward <t< td=""><td>(B-11aget)         (B-11aget)           SHTS         EPON 826/MABA         2,34         76.2         1,374         0,3249         2,54           SHTS         EPON 826/MABA         0,1587         0,1587         6,93         7,62         1,374         0,3249         2,54           Isinom         Polyester         0,1587         0,1587         6,15         1,25         25.0         6,93         7,62           Explored         CIL:         2,37         2,56         10,37         16,74         16,74           Explass         GIL:         5,00         2,50         9,33         13,86         3,16           Creters         Greters         3,5         1,25         2,50         9,33         13,86           Operations         3,5         1,25         2,50         9,33         13,86         3,96           Operations         3,5         1,25         2,50         6,04         5,80         5,80         5,80         5,86         5,80         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86</td><td>54 76.2</td><td>0.2967</td><td>0.0525 2.54</td><td>38.1 0.351</td><td>6 0.0876</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B-11aget)         (B-11aget)           SHTS         EPON 826/MABA         2,34         76.2         1,374         0,3249         2,54           SHTS         EPON 826/MABA         0,1587         0,1587         6,93         7,62         1,374         0,3249         2,54           Isinom         Polyester         0,1587         0,1587         6,15         1,25         25.0         6,93         7,62           Explored         CIL:         2,37         2,56         10,37         16,74         16,74           Explass         GIL:         5,00         2,50         9,33         13,86         3,16           Creters         Greters         3,5         1,25         2,50         9,33         13,86           Operations         3,5         1,25         2,50         9,33         13,86         3,96           Operations         3,5         1,25         2,50         6,04         5,80         5,80         5,80         5,86         5,80         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86         5,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 76.2                                 | 0.2967                               | 0.0525 2.54                                        | 38.1 0.351                     | 6 0.0876                  |                  |       |                                        |                             |
| SHTS         EPON 826/MABA         2.34         76.2         1.374         0.3249         2.54         38.1         1.6.26         0.4904           [5]         Random         Polvester         0.1587         G1.5         1.23         25.0         9.93         7.62         1.5         1.05         1.00         10.1         16.2           Random         Polvester         0.1587         G1.5         1.25         25.0         9.03         14.86         1.5         1.05         10.00         19.1         16.2           Replace         0.1587         G1.5         2.50         25.0         9.35         14.86         1.5         1.05         10.00         9.4         14.0           Felass         G1.5         5.50         6.33         7.65         9.35         13.66         9.5         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6         15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHTS         EPON 826/MABA         2.54         76.2         1.374         0.5249         2.54           [5]         Random         Polyester         0.1587         G.1.5         1.25         25.0         6.93         7.62         5.48           [5]         Random         Polyester         0.1587         G.1.5         1.75         25.0         6.93         7.62         5.48           [5]         Reales         G.1.5         3.75         2.50         9.35         9.36         1.486           [6]         G.1.5         3.75         2.50         9.35         13.66         9.35         13.66           [hbres         G.1.5         3.75         2.50         9.35         13.66         9.36           [hbres         G.1.5         3.75         2.50         9.35         13.66         9.36           [hbres         G.1.5         3.75         2.50         6.39         3.06         9.06         5.80         9.06         5.80           for effens         S.00         2.50         6.04         5.80         9.06         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                      |                                                    |                                |                           |                  |       |                                        |                             |
| $ \begin{bmatrix} 5 \end{bmatrix} \text{ Random Polyester} & 0.1587 & 0.1587 & 0.1587 & 0.1587 & 0.1587 & 0.010 & 101 & 16.2 \\ \text{topped} & \text{topped} & 1.5 & 1.05 & 10.00 & 100 & 100 & 16.0 \\ \text{Eglass} & 0.00 & 0.0127 & 16.74 & 1.5 & 1.3 & 1.30 & 10.00 & 100 & 16.0 \\ \text{Eglass} & 0.125 & 0.250 & 0.35 & 10.27 & 16.74 & 1.5 & 1.30 & 10.00 & 9.9 & 15.4 \\ \text{G1.5 } & 3.0 & 2.50 & 2.50 & 2.50 & 2.51 & 0.32 & 1.36 & 3.5 & 2.90 & 10.00 & 9.9 & 15.4 \\ \text{G1.5 } & 3.5 & 1.25 & 2.50 & 4.39 & 3.06 & 3.5 & 4.80 & 10.00 & 9.9 & 15.4 \\ \text{G1.5 } & 3.5 & 2.50 & 6.04 & 5.80 & 3.5 & 1.30 & 10.00 & 9.9 & 15.4 \\ \text{G1.6 } & 3.5 & 2.50 & 6.04 & 5.80 & 3.5 & 2.90 & 10.00 & 9.9 & 15.4 \\ \text{G1.6 } & 3.5 & 2.50 & 6.04 & 5.80 & 0.00 & 7.9 & 10.00 & 9.9 & 15.4 \\ \text{G1.6 } & 3.5 & 2.50 & 6.04 & 5.80 & 0.00 & 7.9 & 10.00 & 9.9 & 15.4 \\ \text{G1.6 } & 3.5 & 2.50 & 6.58 & 6.88 & 1.5 & 1.00 & 10.00 & 9.1 & 14.0 \\ \text{S1.6 } & 4.86 & 6.88 & 1.5 & 0.30 & 10.00 & 7.9 & 10.04 \\ \text{S1.6 } & 4.36 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.6 & 5.8 & 5.80 \\ \text{S1.6 } & 4.36 & 5.80 & 5.80 & 5.80 & 5.80 & 5.80 & 0.00 & 7.9 & 10.04 \\ \text{S1.6 } & 4.36 & 5.80 & 5.70 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5.50 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [5] Random         Polyester         0.1587         0.1587         C         1.25         2.50         6.91         7.62           Expoped         Equas         61.5         2.50         25.0         6.93         7.62           Exposed         61.5         2.57         25.0         0.33         14.86           Explass         61.5         2.75         25.0         0.32         16.74           Ibres         61.5         2.75         25.0         0.32         15.86           Grefers         3.5         1.25         25.0         0.33         3.06           Crefers         3.5         2.75         25.0         6.93         3.06           orgrowed         3.5         2.75         25.0         6.88         88           specimens         3.5         3.75         25.0         6.41         6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54 76.2                                 | 1.374                                | 0.5249 2.54                                        | 38.1 1.626                     | 0.4904                    |                  |       |                                        |                             |
| ClippedClips2.505.509.6814.861.53.0510.009.414.0EglassEglass1.53.752.5010.2716.741.53.51.009.915.4Erglass1.53.755.500.259.3510.2716.741.53.51.3010.009.915.4Erglass1.53.755.501.2716.743.52.9010.009.915.4Erglass3.51.272.504.933.063.52.9010.009.915.4S3.52.506.045.802.506.045.803.52.9010.009.915.4S3.52.506.045.805.805.805.805.905.709.915.4S3.52.506.045.805.805.805.805.901.51.009.915.4S3.52.506.045.805.805.805.905.701.51.009.91.11.04S3.52.506.045.805.705.905.705.905.701.51.009.91.11.04S3.55.002.505.506.045.805.905.701.51.009.91.11.04S5.505.505.505.505.505.505.905.705.901.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Epiloped         G1.5         2.50         25.0         9.68         14.86           Epilos         G1.5         3.75         5.00         10.27         16.74           Ibres         G1.5         3.75         5.00         25.0         9.38           Ibres         G1.5         2.75         25.0         9.33         13.86           Ibres         G1.5         2.50         2.50         9.30         3.06           to growed         3.5         1.25         2.50         4.39         3.06           to growed         3.5         2.75         2.50         6.04         5.80           specimens         3.5         3.75         2.50         6.58         6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 1.25 25.0                             | 6.93                                 | 7.62                                               |                                | -                         | .5 1.05          | 10.00 | 10.1                                   | 16.2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eglas         G1.5         3.75         25.0         10.27         16.74           fibres         G1.5         5.00         25.0         3.5         13.86           fibres         G1.5         5.00         25.0         4.39         3.06           or refers         3.5         1.25         25.0         6.04         5.80           operimens         3.5         2.75         5.50         6.08         5.80           specimens         3.5         5.00         25.0         6.04         5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 2.50 25.0                             | 9.68                                 | 14.86                                              |                                | Г                         | .5 3.05          | 10.00 | 9.4                                    | 14.0                        |
| Tittes     G1.5     5.00     25.0     9.35     13.86     3.5     1.30     10.00     9.9     15.6       3.5     1.25     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.30     5.41     5.00     9.4     14.0       3.5     2.50     6.58     6.58     6.88     1.5     1.00     10.0     7.1     10.0       3.5     5.20     5.30     6.43     6.68     1.5     1.5     1.00     10.0     7.1     10.0       3.5     5.20     5.30     6.43     6.52     1.5     4.40     10.00     7.1     10.0       3.5     5.20     5.70     5.90     5.70     5.70     5.70     5.70     10.00     7.1     10.0       1.5     4.33     25.0     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70     5.70 </td <td>Tibres         G 1.5         5.00         2.50         9.35         13.86           G refers         3.5         1.25         25.0         6.04         5.80           to grooved         3.5         2.50         6.04         5.80           specimens         3.5         5.00         25.0         6.41         6.638           specimens         3.5         5.00         25.0         6.41         6.52</td> <td>5 3.75 25.0</td> <td>10.27</td> <td>16.74</td> <td></td> <td>1</td> <td>.5 4.80</td> <td>10.00</td> <td>10.0</td> <td>16.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tibres         G 1.5         5.00         2.50         9.35         13.86           G refers         3.5         1.25         25.0         6.04         5.80           to grooved         3.5         2.50         6.04         5.80           specimens         3.5         5.00         25.0         6.41         6.638           specimens         3.5         5.00         25.0         6.41         6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 3.75 25.0                             | 10.27                                | 16.74                                              |                                | 1                         | .5 4.80          | 10.00 | 10.0                                   | 16.0                        |
| G refers     3.5     1.25     2.50     4.39     3.06     3.5     2.90     10.00     9.9     15.6       D oproved     3.5     2.50     6.04     5.80     5.80     3.5     4.85     10.00     9.4     14.0       D oproved     3.5     2.50     6.04     5.80     5.80     1.5     1.00     10.00     9.4     14.0       3.5     5.00     2.50     6.51     6.58     1.5     1.00     10.00     9.1     10.4       3.5     5.00     2.50     5.56     5.64     5.88     1.5     1.00     10.00     9.1     14.0       3.5     5.00     2.50     5.57     5.59     4.96     1.5     1.00     10.00     7.9     10.0       3.5     4.36     5.50     5.50     5.99     5.70     5.10     10.00     7.9     10.0       1.5     4.38     2.50     5.9     5.70     5.70     5.7     1.5     1.4.0       1.5     4.38     2.50     8.15     10.55     5.7     3.5     1.00     10.00     7.9     10.0       1.5     4.38     2.50     8.15     10.55     3.5     1.4.0     3.5     1.000     7.9     10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G refers         3.5         1.25         25.0         4.39         3.06           to grooved         3.5         2.50         2.50         6.04         5.80           specimens         3.5         3.75         2.50         6.58         6.88           specimens         3.5         3.06         5.41         6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.00 25.0                               | 9.35                                 | 13.86                                              |                                |                           | 5 1.30           | 10.00 | 6.6                                    | 15.4                        |
| to grooved     3.5     2.50     5.50     6.04     5.80     3.5     4.65     100     9.4     14.0       specimens     3.5     3.75     5.50     6.58     6.88     1.5     1.00     1000     8.1     10.4       3.5     5.70     5.50     6.54     6.58     6.88     1.5     1.00     1000     7.9     10.0       3.5     5.70     5.50     6.41     6.52     1.5     1.00     10.00     7.9     10.0       3.5     6.25     5.41     6.52     5.41     6.52     1.5     4.80     10.00     7.9     10.0       3.5     6.25     5.70     5.9     4.96     5.70     5.1     1.5     4.80     10.00     7.9     10.0       1.5     4.38     25.0     8.15     10.55     3.5     1.30     10.00     7.8     9.8       1.5     3.95     25.0     8.15     10.55     3.5     1.4.0     10.00     7.8     9.8       1.5     3.95     25.0     8.15     10.55     3.5     10.00     7.9     9.0       1.5     3.95     25.0     8.15     10.55     3.5     4.80     10.00     7.9     9.0       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to grooved 3.5 2.50 5.04 5.80 3.5 3.75 25.0 6.04 5.80 3.5 specimens 3.5 5.00 6.58 6.88 3.5 5.00 25.0 6.41 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 25 25.0                               | 4 30                                 | 3.06                                               |                                |                           | 5 2.90           | 10.00 | 0 0                                    | 15.6                        |
| specimens         3.5         3.75         2.50         6.28         6.88         1.5         1.00         100         8.1         10.4           3.5         5.00         25.0         6.41         6.52         1.5         0.30         10.00         8.1         10.4           3.5         5.00         25.0         6.41         6.52         1.5         0.30         10.00         9.1         14.0           3.5         6.22         25.0         8.15         10.55         3.5         10.00         7.9         10.0           1.5         4.38         25.0         8.15         10.55         3.5         10.00         7.9         14.0           1.5         3.95         25.0         8.15         10.55         3.5         10.00         7.9         9.8           1.5         3.95         25.0         8.15         10.55         3.5         10.00         7.9         9.8           1.5         3.95         25.0         8.15         10.55         3.5         10.00         7.9         9.8           1.5         3.95         25.0         8.15         10.55         3.5         4.00         10.00         7.9         9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | specimens 3.5 3.75 25.0 6.58 6.88 3.5 5.00 25.0 6.41 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 2.50 25.0                             | 6.04                                 | 5.80                                               |                                |                           | 5 4.85           | 10.00 | 94                                     | 14.0                        |
| 3.5     5.00     2.50     6.10     5.00     1.5     0.30     1.00     0.00     7.9     1.00       3.5     5.00     2.50     5.59     4.96     1.5     1.60     7.9     10.0       1.5     4.38     25.0     8.15     10.55     3.5     1.00     7.9     10.0       1.5     4.38     25.0     8.15     10.55     3.5     1.00     7.9     10.0       1.5     4.38     25.0     8.15     10.55     3.5     1.00     7.9     10.0       1.5     3.98     25.0     8.15     10.55     3.5     10.00     7.9     10.0       1.5     3.98     25.0     8.15     10.55     3.5     4.80     10.00     7.9     10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5 5.00 25.0 6.41 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 75 250                              | 6 5 8                                | 88 4                                               |                                | . –                       | 1 00             | 10.00 | 18                                     | 10.4                        |
| 3.5     6.25     5.30     6.96     1.5     4.80     10.00     9.1     14.0       1.5     4.38     25.0     5.99     5.70     5.9     5.70     3.5     1.30     10.00     7.8     9.8       1.5     4.38     25.0     8.15     10.55     3.9     5.70     3.5     10.00     7.8     9.8       1.5     3.95     25.0     8.15     10.55     3.5     10.00     7.9     10.0       1.5     3.95     25.0     8.15     10.55     3.5     4.80     10.00     7.9     10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 00 250                                | 641                                  | 6.53                                               |                                |                           |                  | 10.01 | 1.0                                    | 10.01                       |
| 1.5 0.25 0.59 5.70 1.0.55 1.2 1.20 1.0.00 7.8 1.9.0<br>1.5 4.38 2.5.0 8.15 10.55 3.5 0.29 10.00 7.8 9.8<br>1.5 3.95 2.5.0 8.15 10.55 3.5 0.29 10.00 7.9 10.0<br>3.5 4.80 10.00 7.1 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02 00.0                               |                                      | 7 00                                               |                                |                           | 0.00             | 0001  |                                        |                             |
| 1.5 3.95 25.0 8.15 10.55 3.5 2.29 0.00 7.9 2.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22 0.20 050                           | 00 4                                 |                                                    |                                | - (*                      |                  | 10.00 | 1.1                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.95 25.0                               | 8.15                                 | 10.55                                              |                                | <b>۲</b>                  | 5 0.79           | 10.00 | 0.1                                    | 10.0                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                      |                                                    |                                | 1.60                      | 5 4.80           | 10.00 | 7.1                                    | 8.0                         |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 7.62       31.7       23.7.8         0.0363       3.17       27.07         6.35       3.81       43.29         6.73       3.81       44.17         9.52       3.81       44.17         9.53       3.81       44.17         9.53       3.81       44.17         9.53       3.81       44.17         9.53       3.81       44.32         9.53       3.81       44.32         9.53       3.81       43.29         9.53       3.81       43.29         9.65       3.81       43.29         9.65       3.81       43.29         9.65       3.81       43.29         9.65       3.60       8.1.32         6.55       3.61       49.89         6.55       3.66       8.1.32 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.78 2.29 254 6.96<br>1.78 2.79 254 8.06<br>1.78 3.56 254 8.42<br>1.78 3.56 254 8.42<br>1.78 3.56 254 8.48 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 0.0363                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                                                                            |

|             | Reinforcemen                                              | ıt Matrix   | UTS          | S <sub>11</sub>      | CN                |                                              |                                            |                                      | DEN                  |                                            |                                                                                                                                                         |                                               | SEN              |           |                                                             | BEN                   | Q                    |                         |                                          |                                         |
|-------------|-----------------------------------------------------------|-------------|--------------|----------------------|-------------------|----------------------------------------------|--------------------------------------------|--------------------------------------|----------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|-----------|-------------------------------------------------------------|-----------------------|----------------------|-------------------------|------------------------------------------|-----------------------------------------|
|             |                                                           |             | (MPa)        | (GPa <sup>-1</sup> ) | t<br>(mm)         | a W<br>(mm) (m                               | $K_c$ m) (MPam <sup><math>\nu</math></sup> | <sup>2</sup> ) (kJ m <sup>-2</sup> ) | r<br>(mm)            | 1) (mm)                                    | / K                                                                                                                                                     | $G_{c}^{e}$ $G_{c}^{e}$ (kJ m <sup>-2</sup> ) | t a<br>(mm) (mm) | W<br>(mm) | K <sub>c</sub> G <sub>c</sub><br>(MPam <sup>1/2</sup> ) (KJ | п <sup>-2</sup> ) (тп | a<br>() (mm)         | M (um)                  | K <sub>e</sub><br>MPa m <sup>1/2</sup> ) | G <sub>e</sub><br>(kJ m <sup>-2</sup> ) |
| [6]         | A Supremat<br>E-glass CSM<br>3-plies                      | Polyester   | 137.0        | 0.101                |                   |                                              |                                            |                                      | 3.2<br>3.2<br>4.54   | 12.50<br>16.67 1<br>25.00 1                | 75.0 10<br>00.0 11<br>50.0 11                                                                                                                           | 0.47<br>1.08<br>1.80<br>1.80                  |                  |           |                                                             |                       |                      |                         | -                                        |                                         |
|             | Tyglass Y221<br>E-glass A1100<br>Silane finish<br>9-plies | Polycster   |              |                      |                   |                                              |                                            |                                      | 2                    |                                            |                                                                                                                                                         |                                               |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | B - 0°                                                    |             | 402.0        | 0.0354               |                   |                                              |                                            |                                      | 2.79                 | 12.50<br>16.67 1                           | 75.0 42                                                                                                                                                 | 2.44<br>2.44                                  |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | B - 0°                                                    |             | 52.4         | 0.0894               |                   |                                              |                                            |                                      | 2.79<br>2.79<br>2.79 | 12.50<br>12.50<br>16.67<br>1<br>25.00<br>1 | 20.00<br>75.0<br>4<br>200.0<br>4<br>4<br>4<br>20.0<br>4<br>4<br>4<br>20.0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1,73<br>1,73<br>1,73                          |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | C Tyglass<br>Y449<br>Silane finish<br>7-plies             | Polyester   | 229.0        | 0.0487               |                   |                                              |                                            |                                      | 3.09<br>3.09<br>3.09 | 100.00 0<br>12.50<br>16.67 1<br>25.00 1    | 75.0 19<br>75.0 19<br>50.0 22                                                                                                                           | 1,51<br>2,60<br>2,70                          |                  |           |                                                             |                       |                      |                         |                                          |                                         |
| [10]        | None                                                      | Polyester   | 52.9<br>52.9 | 0.2597               | 1.25              | 12.7 76                                      | 5.2 0.825<br>.2 0.699                      |                                      |                      |                                            |                                                                                                                                                         |                                               |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | CSM FGE 200<br>E-elass 1 nfv                              | Polyester   | 78.9         |                      | 1.25              | 12.7 76                                      | 5.2 9.61                                   |                                      |                      |                                            |                                                                                                                                                         |                                               |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | Tyglass Y227<br>E-glass 1 ply                             | Polyester   | 255.4        |                      | 1.25              | 12.7 76                                      | 5.2 13.63                                  |                                      |                      |                                            |                                                                                                                                                         |                                               |                  |           |                                                             |                       |                      |                         |                                          |                                         |
| [ <u></u> ] | CSM Supremat<br>6-plies                                   | t Polyester | 85.0         | 0.1205               | 5.8<br>5.8<br>5.8 | 10.0 10(<br>15.0 10(<br>20.0 10(<br>25.0 100 | 0.0                                        | 20.65<br>19.61<br>17.79<br>17.20     |                      |                                            |                                                                                                                                                         |                                               |                  |           |                                                             |                       |                      |                         |                                          |                                         |
| [12]        | M(CSM) +<br>R(WRF 779-<br>style) as<br>M/R/M/R/M          | Polyester   |              | 0.0545               |                   |                                              |                                            |                                      |                      |                                            |                                                                                                                                                         |                                               | 5.49 Various     | 114.3     | 19.30                                                       |                       |                      |                         |                                          |                                         |
| [13]        | CSM                                                       | Polyester   | 85.0         | 0.1205               | 5.8<br>5.8        | 10.0 100<br>15.0 100                         | 0.0 8.81                                   |                                      | 5.8                  | 10.0 1<br>15.0 1                           | 00.0 8<br>00.0 8.                                                                                                                                       | 139                                           |                  |           |                                                             | 6.0<br>6.0            | 30.0<br>40.0         | 150.0<br>200.0          | 5.64<br>6.63                             |                                         |
|             |                                                           |             |              |                      | 5.8<br>5.8        | 20.0 100<br>25.0 100                         | 0.0 9.78<br>1.0 8.91                       |                                      | 5.8<br>5.8           | 20.0 1<br>25.0 1                           | 0.00<br>9.0                                                                                                                                             | 866<br>1.98                                   |                  |           |                                                             | 6.0                   | 50.0                 | 250.0                   | 6.64                                     |                                         |
|             |                                                           |             |              |                      | 8.8.5<br>8.8.8    | 15.0 100<br>22.5 150<br>30.0 200             | 0.0 9.43<br>0.0 8.98<br>0 8.60             |                                      | 5.8<br>5.8           | 15.0 1                                     | 00.0 8                                                                                                                                                  | 1.12                                          |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             |                                                           |             |              |                      | 5.8               | 37.5 250<br>90.0 600                         | 0 10.66                                    |                                      | 5.8                  | 37.5 2                                     | 50.0 10                                                                                                                                                 | 0.04                                          |                  |           |                                                             |                       |                      |                         |                                          |                                         |
|             | CSM                                                       | Urethane    | 67.7         | 0.0599               |                   |                                              |                                            |                                      |                      |                                            |                                                                                                                                                         |                                               |                  |           |                                                             | 6.0<br>6.0            | 30.0<br>40.0<br>50.0 | 150.0<br>200.0<br>250.0 | 5.63<br>6.21<br>6.24                     |                                         |

| Reinforcement Matrix         UTS         S1,<br>(MPa)         CB         DEN         EBND         EBND         EBND         EBND         Component         MID         CBP-1         Component         MID         Cap         MID         Cap         MID         < | TABLE I (Continued)                                                                                                                                                                  |                |                                                                       |                                              |                                                         |                                           |                                                |           |        |                            |                             |                 |         |                                           |                       |           |       |                                           |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------|--------|----------------------------|-----------------------------|-----------------|---------|-------------------------------------------|-----------------------|-----------|-------|-------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reinforcement Matrix                                                                                                                                                                 | UTS            | S.,,                                                                  | CN                                           |                                                         |                                           | DEN                                            |           |        |                            |                             | SEN             |         |                                           | BEN                   | ρ         |       |                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      | (MPa)          | (GPa <sup>-1</sup> )                                                  | r<br>(mm)                                    | a W<br>(mm) (mm)                                        | К <sub>е</sub><br>(МРа т <sup>и 2</sup> ) | G <sub>c</sub> t<br>(kJ m <sup>-2</sup> ) (mm) | a<br>(mm) | M<br>M | Ke<br>(MPa m <sup>17</sup> | Ge<br>(kJ m <sup>-2</sup> ) | t a<br>(mm) (mr | (mm) () | $K_{c}$ $G_{c}$ $(MPam^{1/2})$ $(kJ_{1})$ | n <sup>-2</sup> ) (mm | a<br>(mm) | (mm)  | γ <sub>e</sub><br>(MPa m <sup>1/2</sup> ) | Ge<br>(kJm <sup>-2</sup> ) |
| V449 $3.6$ $1.000$ $11.720$ $3.6$ $2.00$ $10000$ $11.720$ $3.6$ $2.00$ $1000$ $17.20$ $3.6$ $2.00$ $1000$ $17.20$ $3.6$ $3.00$ $13.09$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $13.90$ $3.6$ $3.00$ $23.00$ $13.16$ $3.00$ $13.00$ $17.90$ $3.16$ $3.7.5$ $3.00$ $23.00$ $3.16$ $3.7.6$ $3.00$ $23.00$ $3.16$ $3.7.6$ $3.00$ $23.00$ $3.17.6$ $3.00$ $23.00$ $3.17.6$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$ $3.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tyglass Polyester                                                                                                                                                                    | 202.3          | 0.1880                                                                | 3.6                                          | 10.0 100.0                                              | 17.14                                     | 3.6                                            | 10.0      | 100.0  | 16.10                      |                             |                 |         |                                           |                       |           |       |                                           |                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y 44 Y                                                                                                                                                                               |                |                                                                       | 9.6<br>3.6                                   | 20.0 100.0                                              | 17.29                                     | 3.6<br>3.6                                     | 20.0      | 100.0  | 18.88                      |                             |                 |         |                                           |                       |           |       |                                           |                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                |                                                                       | 3.6                                          | 25.0 100.0                                              | 16.91                                     | 3.6                                            | 25.0      | 100.0  | 17.88                      |                             |                 |         |                                           |                       |           |       |                                           |                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                |                                                                       | 3.6                                          | 15.0 100.0                                              | 17.72                                     | 3.6                                            | 15.0      | 100.0  | 17.90                      |                             |                 |         |                                           |                       |           |       |                                           |                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                |                                                                       | 3.6                                          | 22.5 150.0                                              | 19.86                                     | 3.6                                            |           |        |                            |                             |                 |         |                                           | 3.6                   | 30.0      | 150.0 | 13.99                                     |                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                |                                                                       | 3.6                                          | 30.0 200.0                                              | 20.33                                     | 3.6                                            |           |        |                            |                             |                 |         |                                           | 3.6                   | 40.0      | 200.0 | 15.14                                     |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      |                |                                                                       | 3.6                                          | 37.5 250.0                                              | 21.58                                     | 3.6                                            | 37.5      | 250.0  | 23.14                      |                             |                 |         |                                           | 3.6                   | 50.0      | 250.0 | 17.76                                     |                            |
| [15] Unidirectional Epoxy     1295     3.10     12.7     25.4     14.4       Nomenclature     S1, Minimum normal material compliance     S1, Minimum normal material compliance     S1, Minimum normal material compliance       DEN Dubble edge-notes preciments     r     Speciment thickness     S1, Minimum normal material compliance       DEN Dubble edge-notes preciments     r     Speciment thickness     Concord speciments       DEN Dubble edge-notes preciments     r     Speciment thickness       Den So at a point band speciments     Wintimate tensile strength     Ke       Ultimate tensile strength     Ke     Uncorrected critical stress intensity factor (Mode I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [14] CSM Epoxy<br>3 plies                                                                                                                                                            | 160            |                                                                       |                                              |                                                         |                                           |                                                |           |        |                            |                             | 3.18 5.0        | 8 25.4  | 13.42                                     |                       |           |       |                                           |                            |
| Nomenclature S <sub>11</sub> Minimum normal material compliance CN Centre notch specimens S <sub>11</sub> Minimum normal material compliance DEN Double dege-notch specimens a Catel length (nalf crack length in CN specimens) Bend 3 or 4-point bend specimens w Specimens with K <sub>c</sub> Uncorrected critical stress intensity factor (Mode I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [15] Unidirectional Epoxy                                                                                                                                                            | 1295           |                                                                       |                                              |                                                         |                                           |                                                |           |        |                            |                             | 3.10 12.7       | 25.4    | 14.4                                      |                       |           |       |                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nomenclature<br>CN Centre notch specimens<br>DEN Double edge-notch specimens<br>SEN Single edge-notch specimens<br>Bend 3 or 4-point bend specimens<br>UTS Ultimate tensile strength | N. K. B. L. S. | Minimum n<br>Specimen th<br>Crack lengtl<br>Specimen w<br>Uncorrected | ormal mat<br>hickness<br>h (half cra<br>idth | erial complianc<br>ck length in CN<br>ress intensity fi | e<br>specimens)<br>actor (Mode I)         |                                                |           |        | -<br>-<br>-                |                             |                 |         |                                           |                       |           |       |                                           |                            |

CSM Chopped strand mat  $G_{c}$  Critical strain energy release rate G Suffix in thickness column indicates grooved specimens  $K_{c}$  suffix in thickness column indicates grooved specimens  $K_{c}$  are uncorrected values, calculated by the author where not given in the reference. Corrected values are discussed in the text (Section 2.3).

10% have been recorded in GRP immersed for long periods in water at room temperature [16, 17]. The ability of filament-wound GRP to maintain its stiffness when subjected to cyclic loading under water has been shown to depend on the strength of the glass—resin bond [18].

The Paris crack-propagation law [19] has been applied to several types of composite materials [20-23]. Values of A and m in the equation

$$\frac{\mathrm{d}a}{\mathrm{d}N} = A(\Delta K)^m \tag{2}$$

have been determined for some GRP up to 20000 cycles [23].

The main conclusions to be drawn from the survey are as follows:

(1) many of the published results have been derived from small specimens;

(2) the correlation between  $G_{c}$  and  $K_{c}$  results is poor;

(3) for some materials, e.g. chopped strand mat reinforced polyester resin, there seems to be a marked size effect which could suggest the relevance of fracture mechanics concepts;

(4) the conditions for valid fracture toughness testing of GRP have not yet been established.

## 2. Materials and test methods

The materials examined in the present work were (i) polyester resin reinforced with chopped strand mat (CSM/PR), and (ii) polyester resin reinforced with woven roving fabric (WRF/PR). The details are given in Table II. Laminates were laid up by hand, then left for 3 days at room temperature before post-curing for 3 days at  $40^{\circ}$  C, and then cut into specimens with a diamond-impregnated slitting wheel. The strength and stiffness properties of the materials were determined using the tensile and plate twist specimens shown in Fig. 2 and are summarised in Table III.

Glass content by weight was determined by burning the resin from weighed samples cut from test specimens in a muffle furnace, then weighing the remaining glass. Using the least squares method, straight lines were fitted to plots of strength, stiffness, and fracture toughness versus glass content. This adequately described the variation of these properties over the range of glass content encountered in the work.

To simulate the effect of several years immersion in water, specimens were conditioned in tap water at ambient temperature under a pressure of 6.9 MPa



Figure 1 Survey of reported fracture toughness results.

for 16 weeks. The water absorption was found to be independent of specimen type or size. For CSM/PR and WRF/PR the increase in weight due to water absorbed was 1.2 and 0.6%, respectively. Water damage took the form of patches of debonded fibres evenly distributed over the specimens. There were no resin cracks.

The centre-notched (CN) specimens shown in Fig. 2 were used in both fracture toughness testing and fatigue crack propagation studies. For this geometry, the stress intensity factor, K, is given in [1] as

$$K = \sigma_{\rm G} \sqrt{W} \left(\frac{a}{W}\right)^{\frac{1}{2}}$$
(3)  
$$\left[ \left( a \right)^2 \left( a \right)^2 \left( a \right)^{\frac{3}{2}} \right]^{\frac{3}{2}}$$

$$\times \left[ 1.77 + 0.454 \left( \frac{a}{W} \right) - 1.02 \left( \frac{a}{W} \right)^2 + 5.4 \left( \frac{a}{W} \right) \right]^5$$

where  $\sigma_{\rm G}$  is the gross stress applied to the ends of the specimen. To calculate  $K_{\rm c}$ , the peak value of  $\sigma_{\rm G}$  reached during a test,  $\sigma_{\rm cG}$ , was used in the above equation, with the half-length of the sawn crack,  $a_0$ .

The testing machines used for tensile and fracture toughness testing were either an Instron 1195, or a modified type "E" Tensometer, or a Denison T42(500 kN), according to availability, at crosshead speeds of about  $1 \text{ mm min}^{-1}$ . For 900 mm wide specimens, a 1000 kN machine was designed

TABLE II Description of materials

| Abbreviation | Trade name             | Description                                                                                                                                                                                                                                                                          |
|--------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSM          | Fibreglass Supremat    | Chopped strand mat, E-glass, $450 \mathrm{g  m^{-2}}$                                                                                                                                                                                                                                |
| WRF          | Turner Bros. ECK25     | Woven roving fabric, E-glass, $830 \mathrm{g}\mathrm{m}^{-2}$ , 197 ends/m warp, 158 ends/m weft                                                                                                                                                                                     |
| PR           | B.P. Cellobond A2785CV | Polyester resin, isophthalic type containing:<br>isophthalic acid<br>maleic anhydride<br>1:2 propylene glycol<br>dissolved in styrene with added aerosil thixotrope<br>and used with:<br>catalyst: methyl ethyl ketone peroxide SD2<br>accelerator: 0.5% cobalt in styrene. NI 48/ST |

and build [24] (Fig. 3) which was also capable of applying pulsating load. For fatigue crack propagation tests on small specimens the 35 kN machines described by Owen [25] were used.

## 3. Fracture toughness results

Fracture toughness tests were carried out on dry and wet CN specimens of both materials, having W = 50, 100 and 150 mm, and with a/W = 0.167. Dry specimens were cut from 3-, 6- and 9-ply material.  $K_c$  was found to depend on the glass content and where there was sufficient variation, it was possible [24] to apply a linear relation between  $K_{c}$  and glass content and hence establish  $K_{c}$  for a standard glass content (35 wt% for CSM/PR, 65 wt % for WRF/PR). Where this was impossible, mean values of results were used. From Tables IV and V, the increase in  $K_c$  with W is much greater in WRF/PR than CSM/PR, but the reduction in  $K_{c}$ due to water absorption is only between 5 and 14% in both materials. There is only a negligible change in  $K_{c}$  with specimen thickness, which indicates that plane strain conditions are unlikely to be achieved, even in many plied laminates. The highly strained material at the crack tip will be trying to contract along the crack front. The less strained material adjacent to the crack front pre-



Figure 2 Specimens (dimensions in mm): (a) tensile; (b) plate twist; (c) centre notched (CN), L/W = 2, and 2y is the gauge length for the compliance gauge.

| TABLE I | II Summary | of ultimate | tensile stress | and compliances |
|---------|------------|-------------|----------------|-----------------|
|---------|------------|-------------|----------------|-----------------|

| Property        |                      | CSM/PR at<br>glass content<br>35% | % change due to water absorption | WRF/PR at<br>glass content<br>65% | % change due to<br>water absorption |
|-----------------|----------------------|-----------------------------------|----------------------------------|-----------------------------------|-------------------------------------|
| UTS             | (MPa)                | 124.8                             | - 2.5                            | 385.2                             | - 17.5                              |
| S 11            | (GPa <sup>-1</sup> ) | 0.1004                            | + 10.4                           | 0.040 37                          | + 2.1                               |
| S 22            | (GPa <sup>-1</sup> ) | 0.1004                            | + 10.4                           | 0.040 37                          | + 2.1                               |
| S <sub>12</sub> | (GPa <sup>-1</sup> ) | - 0.0399                          | 6.9                              | - 0.008 23                        | + 169.2                             |
| S 66            | (GPa <sup>-1</sup> ) | 0.2805                            | + 2.5                            | 0.224 0                           | + 16.3                              |



Figure 3 1000 kN capacity loading frame.

vents this and in a homogeneous yielding material plane strain conditions may be established. In GRP, the interfacial and interply strength is probably too low to support tensile forces along the crack front.

If  $K_c$  is a constant material property, from Equation 3 as  $a_0/W \rightarrow 0$ ,  $\sigma_{cG} \rightarrow \infty$ . Clearly the failure stress of the material is an upper bound to  $\sigma_{cG}$ . Similarly, when  $a_0/W = 0.5$ , Equation 3 predicts a finite value for  $\sigma_{cG}$  when there is no material holding the specimen together.  $K_c$  cannot, therefore, be constant over the whole range of crack length. To see if a region existed between  $a_0/W = 0$  and 0.5, where  $K_c$  was constant, 100 mm wide CN specimens of both materials were tested containing various length cracks.  $K_c$ , together with gross failure stress  $\sigma_{cG}$ , and nett failure stress  $\sigma_{cN}$ , are shown in Figs. 4 and 6. Use of the dimensionless forms  $K_c/(\sigma_{UTS}\sqrt{W})$ ,  $\sigma_{cG}/\sigma_{UTS}$ , and  $\sigma_{cN}/\sigma_{UTS}$ , (where  $\sigma_{\text{UTS}}$  is that of the material around the crack, determined from the glass content of the material in this region), can be seen to reduce the scatter associated with glass content variation in the CSM/PR results (Figs. 4 and 5). In WRF/PR the glass content variation was smaller, so this procedure has little effect (Figs. 6 and 7).

In Figs. 4 to 7 it can be seen that  $K_c$  varies continuously with crack length. This behaviour was repeated in 915 mm wide specimens of CSM/PR (Fig. 8), but there appears to be a region where  $K_c$ may be reasonably constant with a/W. In Figs. 6 and 7, it can be seen that the nett section stress is constant in WRF/PR specimens, but not equal to the material ultimate tensile stress. Tests on a 100 mm wide specimen with no crack showed that this was caused by a stress concentration at the grips which proved more severe than the very short cracks. Failure of all WRF/PR specimens appeared to be by general simultaneous failure of the rovings, which tend to block crack propagation until their failure load is reached.

The failure of the 915 mm wide specimens of CSM/PR, occurred at very low stresses compared with the 100 mm specimens. The failure of all sizes of WRF/PR specimens occurred at about the same stress for a given crack length (Table VI). The load-displacement recording taken during the tests on the longest specimens was linear up to sudden failure. The failure of smaller specimens was less sharply defined.

| Nominal width<br>(mm) | Number of<br>layers | Number of specimens | Mean K <sub>c</sub><br>(MPa m <sup>1/2</sup> ) | 35% glass<br>content<br>(MPa m <sup>1/2</sup> ) |
|-----------------------|---------------------|---------------------|------------------------------------------------|-------------------------------------------------|
| CN 50 Dry             | 3                   | 4                   | 10.35                                          | 9.97                                            |
| 100                   | 3                   | 4                   | 10.90                                          | 10.57                                           |
| 150                   | 3                   | 3                   | 11.52                                          | 11.53                                           |
| CN 50 Wet             | 3                   | 5                   | 8.63                                           | 8.67                                            |
| 100                   | 3                   | 5                   | 9.92                                           | 10.04                                           |
| 150                   | 3                   | 5                   | 10.14                                          | 10.60                                           |
| CN 50 Dry             | 6                   | 5                   | 10.24                                          | 9.79                                            |
| 100                   | 6                   | 5                   | 10.89                                          | 10.77                                           |
| 150                   | 6                   | 6                   | 11.62                                          | 11.40                                           |
| CN 50 Dry             | 9                   | 5                   | 10.26                                          | 10.26                                           |
| 100                   | 9                   | 5                   | 10.96                                          | 10.67                                           |
| 150                   | 9                   | 6                   | 12.08                                          | 11.23                                           |
| CN 50 Dry             | 3, 6, 9             | 14                  | 10.27                                          | 9.89                                            |
| 100                   | 3, 6, 9             | 14                  | 10.92                                          | 10.63                                           |
| 150                   | 3, 6, 9             | 15                  | 11.78                                          | 11.41                                           |

TABLE IV Summary of mean  $K_c$  values and  $K_c$  values at 35% glass content, CSM/PR

| Nominal width<br>(mm) | Number of<br>layers | Number of specimens | Mean K <sub>c</sub><br>(MPa m <sup>1/2</sup> ) | 65% glass<br>content K <sub>c</sub><br>(MPa m <sup>1/2</sup> ) |
|-----------------------|---------------------|---------------------|------------------------------------------------|----------------------------------------------------------------|
| CN 50 Dry             | 3                   | 4                   | 35.89                                          | 35.84                                                          |
| 100                   | 3                   | 4                   | 46.13                                          | 43.83                                                          |
| 150                   | 3                   | 4                   | 55.31                                          | 50.63                                                          |
| CN 50 Wet             | 3                   | 4                   | 31.83                                          | _                                                              |
| 100                   | 3                   | 4                   | 38.36                                          | _                                                              |
| 150                   | 3                   | 4                   | 43.52                                          | _                                                              |
| CN 50 Dry             | 6                   | 3                   | 28.42                                          | _                                                              |
| 100                   | 6                   | 2                   | 39.87                                          | _                                                              |
| 50                    | 9                   | 3                   | 31.40                                          |                                                                |
| CN 100 Dry            | 9                   | 3                   | 45.66                                          |                                                                |
| 50                    | 3, 6, 9             | 10                  | 32.3                                           | -                                                              |
| 100                   | 3, 6, 9             | 9                   | 44.58                                          | 42.59                                                          |

TABLE V Summary of mean K<sub>c</sub> values and K<sub>c</sub> values at 65% glass content, WRF/PR

## 4. Fatigue crack propagation studies

Fatigue crack propagation tests were carried out on 100 mm wide CN specimens of both materials at a constant stress intensity factor range. Crack length was estimated from changes in specimen compliance, since damage obscured the position of the crack tip. Holdsworth and co-workers [11, 13] measured the compliance of several specimens containing sawn cracks of different lengths, but found that small compliance changes due to crack length were masked by variations in glass content. To obtain consistent results in the work described here, compliance in the dimensionless form  $(Ct/S_{11})$  was related to crack length through the solution of a finite element model [24] similar to that described by Walters [27]. C is the specimen compliance measured between gauge points 2yapart (Fig. 2c), t the thickness, and  $S_{11}$  the normal



Figure 4 Change of fracture stress and fracture toughness with notch width, 100 mm wide CN specimens, CSM/PR material.



Figure 5 Results of Fig. 4 in dimensionless form.



Figure 6 Change of fracture stress and fracture toughness with notch width, 100 mm wide specimens, WRF/PR material.

material compliance (=  $S_{22}$  in both materials, see Table III), of the material around the crack estimated from its glass content. In this form, the compliance was shown to be independent of glass content for isotropic and transversely orthotropic materials provided 2y is small. Computed specimen compliances agreed well with experimental compliances when expressed as  $Ct/S_{11}$ .

Initially, a load-displacement curve for the test specimen (maximum load 3 kN), was recorded on an X-Y plotter and assigned a value of  $(Ct/S_{11})$ corresponding to the measured crack length, from the specimen compliance-crack length relation. The specimen was then cycled at a load to give the desired value of stress intensity factor range ( $\Delta K$ ) for a few hundred cycles. The compliance was measured again and the new crack length found from the calibration. The load was reduced to keep  $\Delta K$  constant and the cycling continued. This process was repeated until either the specimen broke, or a large number of cycles had been completed. The initial rate of crack growth was very high compared with the remainder of the test until just before failure.

Graphs of crack growth against cycles at various  $\Delta K$  values for wet and dry CSM/PR and WRF/PR are shown in Figs. 9 to 11 and 13. Rates of growth are given in Tables VII, VIII and IX. The variation in glass content of the dry CSM/PR specimens



Figure 7 Results of Fig. 6 in dimensionless form.

caused crack growth to occur at a lower rate in specimens tested at higher  $\Delta K$  than in specimens tested at an apparently lower  $\Delta K$ . Expressing  $\Delta K$  as  $\Delta K/(\sigma_{\rm UTS}\sqrt{W})$ , where  $\sigma_{\rm UTS}$  is found from the glass content, can be seen from Table VII to remove this anomaly.

In Fig. 9 it is difficult to distinguish regions



Figure 8 Change of failure stress and fracture toughness with notch width, 914 mm wide CN specimens, CSM/PR material.



Figure 9 Fatigue crack growth in 100 mm wide CN specimens, dry CSM/PR material.

where da/dN is constant. The Paris fatigue crack propagation law, equation 2, predicts a finite growth rate at  $\Delta K = K_c$ . In Forman's law [26],

$$\frac{\mathrm{d}a}{\mathrm{d}N} = \frac{A\Delta K^m}{(K_\mathrm{c} - \Delta K)} \tag{4}$$

 $da/dN \to \infty$  as  $\Delta K \to K_c$  but  $K_c$  is assumed constant with a. In the previous section it was shown that  $K_c$  varies with a/W so that it is possible for  $K_c$  to approach the value of  $\Delta K$  at which the specimen is being tested. A third-order polynomial was fitted to the  $K_c/(\sigma_{\rm UTS}\sqrt{W})$  against  $a_0/W$  curve in Fig. 5 to express Equation 4 in the form

$$\frac{\mathrm{d}a_{\mathrm{D}}}{\mathrm{d}N} = \frac{A\Delta K_{\mathrm{D}}^{m}}{[B_{0} - \Delta K_{\mathrm{D}}] + B_{1}a_{\mathrm{D}} + B_{2}a_{\mathrm{D}}^{2}} \quad (5)$$

where the  $B_0$ ,  $B_1$  and  $B_2$  are constants,  $a_D = a_0/W$ ,  $\Delta K_D = \Delta K/(\sigma_{\text{UTS}}\sqrt{W})$ , which in a constant  $\Delta K$  cycling test can be integrated to give [24]:

$$N - N_{i} = k \left[ (B_{0} - \Delta K_{D})(a_{D} - a_{Di}) + \frac{B_{i}}{2} (a_{D}^{2} - a_{Di}^{2}) + \frac{B_{2}}{3} (a_{D}^{3} - a_{Di}^{3}) \right]$$
(6)

where  $a_{Di}$ ,  $N_i$  are initial values and

$$k = 1/A\Delta K^m. \tag{7}$$

The least squares method was used to determine a value of 1/k that gives a best fit for Equation 6 to the curves in Fig. 9. The solid lines in Fig. 9 are Equation 6 and the dotted lines assume da/dN is constant. The Paris law is equivalent to Forman's law at low rates of growth where  $\Delta K$  is much less

than  $K_c$ . For wet CSM/PR and WRF/PR (Figs. 10 and 13), because crack growth took place at low  $\Delta K$  values relative to  $K_c$ , there were clearly defined regions where da/dN was constant.

The fatigue crack-growth resistance of WRF/PR is superior to CSM/PR and its mode of failure quite different. Horizontal crack growth is blocked by vertical rovings. There appear to be several distinct regions of growth rate in Fig. 11. The apparent horizontal crack growth which increases according to compliance measurements, is really growth of vertical cracks at the tips of the initial central crack (Fig. 12). When these have grown to a certain length, growth ceases until the horizontal rovings bridging the crack give way. This effectively divides the specimen into two separate ligaments. Failure follows in the next few thousand cycles. The growth rates in all regions were roughly independent of  $\Delta K$  (Table VII) but Fig. 11 shows that the duration of the central region of low growth rate decreased with increasing  $\Delta K$ . Application of either of the crack-growth laws mentioned above seems inappropriate.

Specimens that had undergone the waterabsorption treatment were kept in a water bath during testing. The rate of crack growth at equivalent  $\Delta K$  values increased by at least three orders of magnitude in CSM/PR specimens due to water absorption (Tables VII to IX). The mechanism in the WRF/PR specimens by which horizontal crack propagation is blocked and vertical cracks formed, is destroyed by prolonged water immersion and horizontal growth took place. Therefore, it was



Figure 10 Fatigue crack growth in 100 mm wide CN specimens, wet CSM/PR material.



Figure 11 Fatigue crack growth in 100 mm wide CN specimens, dry WRF/PR material.



Figure 12 Crack tips in WRF/PR.

possible to apply the Paris law to wet WRF/PR (Fig. 13). da/dN and 1/k are plotted logarithmically against  $\Delta K$  to obtain A and m in the crack growth laws, as in Fig. 14.

In summary, the crack growth in the various specimens could be represented by the following relationships.

For dry CSM/PR using the Paris law

$$\frac{\mathrm{d}a_{\mathrm{D}}}{\mathrm{d}N} = 3.37 \times 10^7 \Delta K_{\mathrm{D}}^{20.33} \tag{8}$$

or

$$\frac{\mathrm{d}a}{\mathrm{d}N} = 1.19 \times 10^{-26} \Delta K^{20.33}$$

(at 35% glass content). (9)

For dry CSM/PR using the Forman law

$$\frac{da_{\rm D}}{dN} = \frac{2.31 \times 10^3 \Delta K_{\rm D}^{15.97}}{K_{\rm Dc} - \Delta K_{\rm D}}$$
(10)

or

$$\frac{\mathrm{d}a}{\mathrm{d}N} = \frac{2.94 \times 10^{-26} \Delta K^{15.97}}{K_{\mathrm{c}} - \Delta K}$$
(at 35% glass content) (11)

where  $K_{c}$ ,  $K_{Dc}$  vary as shown in Figs. 7 and 8,

ΔK Glass content Cycles to failure  $\Delta K_{\mathbf{D}}$  $da_D/dN$ (MPa m1/2) by weight  $N_{\mathbf{c}}$ (%) 2 373 000 S\* Dry 7.75 39.48  $0.719 \times 10^{-8}$ 0.174 7.50 34.93 0.190  $0.206 \times 10^{-6}$ 397 640 8.25 34.95 0.209  $0.421 \times 10^{-6}$ 205630 9.00 34.92  $0.740 \times 10^{-6}$ 190 530 0.228 8.00 32.09 0.221  $0.234 \times 10^{-5}$ 37790 9.50  $0.257 \times 10^{-5}$ 56 300 37.15 0.227 8.50  $0.195 \times 10^{-4}$ 8 5 0 0 31.21 0.241 Wet 5.00 35.22  $0.301 \times 10^{-6}$ 614 050 0.126 6770 6.50 33.89 0.170  $0.249 \times 10^{-4}$ 8.25 35.44  $0.160 \times 10^{-3}$ 1 890 0.207

TABLE VII Fatigue crack propagation tests, CSM/PR

\* S indicates test stopped without failure occurring.

| TA | BLE | VIII | Fatigue | crack pro | opagation | tests, | ,WRF, | /PR, | dry |
|----|-----|------|---------|-----------|-----------|--------|-------|------|-----|
|----|-----|------|---------|-----------|-----------|--------|-------|------|-----|

| Δ <i>K</i><br>(MPa m <sup>1/2</sup> ) | Glass content<br>by weight<br>(%) | ΔK <sub>D</sub> | $da_{D}/dN$ phase 2      | da <sub>D</sub> /dN<br>phase 3 | Cycles to failure<br>N <sub>c</sub> |
|---------------------------------------|-----------------------------------|-----------------|--------------------------|--------------------------------|-------------------------------------|
| 22                                    | 67.68                             | 0.168           | $0.215 \times 10^{-6}$   | 0.195 × 10 <sup>-8</sup>       | 4 904 000 S*                        |
| 24                                    | 67.66                             | 0.184           | 0.148 × 10 <sup>-6</sup> | $0.126 \times 10^{-8}$         | 4 268 179 S                         |
| 26                                    | 64.71                             | 0.215           | $0.155 \times 10^{-6}$   | $0.274 \times 10^{-8}$         | 2 287 000 S                         |
| 30                                    | 66.95                             | 0.234           | $0.101 \times 10^{-6}$   | $0.278 \times 10^{-8}$         | 2 503 260                           |
| 34                                    | 65.52                             | 0.275           | $0.112 \times 10^{-6}$   | $0.221 \times 10^{-8}$         | 1 493 400                           |
|                                       |                                   | Mean value      | $0.146 \times 10^{-6}$   | 0.219 × 10 <sup>-8</sup>       |                                     |

respectively.

or

or

For wet CSM/PR using the Paris law

For wet WRF/PR using the Paris law

CN specimens, CSM/PR and WRF/PR

Half-crack length/

0.2187 CSM/PR

0.054 59 WRF/PR

width ratio

0.05519

0.010 93

0.219 90

a/W

)

 $\frac{da_{\rm D}}{dN} = 1.32 \times 10^5 \Delta K_{\rm D}^{12.86}$ 

 $\frac{da}{dN} = 3.92 \times 10^{-17} \Delta K^{12.86}$ 

(at 35% glass content).

 $\frac{da_{\rm D}}{dM} = 0.007\,94\Delta K_{\rm D}^{5.6}$ 

Gross stress

at failure

18.67

34.36

54.11

232.91

183.25

(MPa)

TABLE VI Fracture toughness tests on 915 mm wide

Nett stress

at failure

(MPa)

33.18

38.60

55.32

261.46

327.12

K<sub>c</sub>

(MPa m<sup>1/2</sup>)

16.49

13.88

93.68

161.98

9.60

(12)

(13)

(14)

\* S indicates test stopped without failure occurring.

| $\frac{\Delta K}{(\text{MPa m}^{1/2})}$ | Glass content<br>by weight<br>(%) | ΔK <sub>D</sub> | $da_{D}/dN$            | Cycles to failure<br>N <sub>c</sub> |
|-----------------------------------------|-----------------------------------|-----------------|------------------------|-------------------------------------|
| 14                                      | 65.46                             | 0.114           | $0.402 \times 10^{-7}$ | 1 970 000 S*                        |
| 18                                      | 65.96                             | 0.144           | $0.166 \times 10^{-6}$ | 494 500                             |
| 22                                      | 66.88                             | 0.172           | $0.410 \times 10^{-6}$ | 271680                              |

TABLE IX Fatigue crack propagation tests, WRF/PR, wet

\* S indicates test stopped without failure occurring.



## 5. Conclusions

Clearly WRF/PR is the tougher of the two materials tested. The rovings prevent crack propagation, which causes the large increase in  $K_c$  with width. This size effect is much less in CSM/PR specimens. For the stress intensity approach to be applicable to GRP specimens they should be (i) of notchsensitive material, and (ii) large enough for rapid crack propagation to be the dominant failure mode. Such failures have been observed in large GRP structures. Results from thin specimens can be applied to thicker material, (provided transverse buckling is restrained in the thin specimens). The effect of water absorption on fracture toughness is small and comparable with the reduction in strength. The survey shows that most GRP are selected for testing at random. Further work should examine the effect on fracture toughness of varying fibre, strand or roving diameter of the reinforcing material, keeping glass content constant. The J



Figure 13 Fatigue crack growth in 100 mm wide CN specimens, wet

WRF/PR material.

Figure 14  $da_D/dN$  or 1/k against  $\Delta K_D$  for the determination of constants in the crack-growth laws.

integral approach has been shown [28] to give  $J_c$ values that are independent of crack length but increase with specimen thickness. The latter may be due to transverse buckling which is known to affect  $K_c$  values.  $J_c$  may be closer to being a material constant than  $K_c$ , but it is difficult to see how, practically, it can be used to describe fatigue crack propagation.

The use of dimensionless forms of  $\Delta K$  has been shown to eliminate scatter in fracture toughness results and explain apparently anomalous rates of growth observed in CSM/PR specimens. The use of Forman's law accounts for changing rates of growth at  $\Delta K$  close to  $K_c$ . The Paris fatigue crack-growth law adequately describes low rates of growth but higher rates of growth are better described by Forman's law, allowing for variation in  $K_c$  with crack length. Neither law is applicable to WRF/PR unless it has been in water for a long period of time. The most important finding is the severe reduction in crack-growth resistance in both materials caused by water absorption.

## Acknowledgement

This work has been carried out with the financial support of the Procurement Executive, Ministry of Defence.

## References

- 1. P. C. PARIS and G. C. SIH, ASTM, STP 381, Philadelphia (1965) p. 30.
- 2. W. F. BROWN and E. SRAWLEY, ASTM, STP 410 (1966).
- E. M. WU and R. C. REUTER, University of Illinois, Department of Theoretical and Applied Mechanics, Report No. AD-613 576 (1963).
- R. J. SANDFORD and R. STONESIFIER, J. Comp. Mat. 5 (1971) 241.
- 5. P. W. R. BEAUMONT and D. C. PHILLIPS, J. Mater. Sci. 7 (1972) 682.
- 6. Idem, J. Comp. Mater. 6 (1972) 32.
- 7. F. MCGARRY and J. F. MANDELL, "Fracture Toughness Studies of Fibre Reinforced Plastic Laminates", Faraday Special Discussions of the Chemical Society, 2 (1972).

- 8. R. HAMILTON and C. BERG, *Fibre Sci. Technol.* 6 (1973) 55.
- 9. M. J. OWEN and P. T. BISHOP, J. Comp. Mater. 7 (1973) 146.
- M. J. OWEN and R. G. ROSE, J. Phys. D. Appl Phys. 6 (1973) 42.
- 11. A. HOLDSWORTH, S. MORRIS and M. J. OWEN, *ibid* 7 (1974) 2036.
- 12. J. F. MANDELL, F. J. MCGARRY, S. S. WANG and J. IM, J. Comp. Mater. 8 (1974) 106.
- 13. A. W. HOLDSWORTH, Ph.D. Thesis, University of Nottingham (1973).
- 14. S. GAGAR and L. J. BROUTMAN, Int. J. Fracture 10 (1974) 606.
- 15. J. T. BARNBY and B. SPENCER, J. Mater. Sci. 11 (1976) 78.
- 16. N. FRIED, J. KAMINETSBY and M. SILVERGLEIT, "The Effect of Deep Submergence Operational Conditions on Filament Wound Plastics", 21st Annual Conf. Soc. of Plastics Industries Reinforced Plastics Division (1966).
- 17. R. C. WYATT and K. H. G. ASHBEE, Fibre Sci. Technol. 2 (1969-70) 29.
- J. B. ROMANS, A. G. SANDS and J. E. COWLING, Ind. Eng. Chem. Product Res. Devel. 11 (1972) 261.
- P. C. PARIS, Boeing Co. Document No. D-17867, Addendum N (1957).
- R. W. HERTZBERG, J. A. MANSON and H. NORD-BERG, Ohio State University Report No. AD-700434 (1963).
- G. C. SIH, P. D. HILTON and R. P. WEI, Report No. AD-709 214 (1970).
- 22. P. A. THORNTON, J. Comp. Mater. 6 (1972) 147.
- M. J. OWEN and P. T. BISHOP, J. Phys. D. Appl. Phys. 7 (1974) 1214.
- 24. R. J. CANN, Ph.D. Thesis, University of Nottingham, (1977).
- 25. M. J. OWEN, Trans. J. Plastics Inst. 35 (1967) 353.
- R. G. FORMAN, V. E. KEARNY and P. M. ENGLE, J. Basic Eng. 89 (1967) 459.
- J. V. WALTERS, Ph.D. Thesis, University of Nottingham (1975).
- G. SMITH, A. K. GREEN and W. H. BOWYER, Proceedings of the Institute of Physics Stress Analysis Group, Annual Conference, Sheffield (1976) "Fracture Mechanics in Engineering Practice" (Applied Science, London, 1977) p. 271.

Received 28 November and accepted 18 December 1978.